Automotive

Published on January 5th, 2016 | by Daniel Sherman Fernandez

0

Ford triples it’s fleet of autonomous cars for testing

Ford is tripling its fleet of fully autonomous Ford Fusion Hybrid test vehicles – making it the largest in the automotive industry – and will use a new-generation sensor technology as the company further accelerates its autonomous vehicle development plans. This year, Ford will add 20 Fusion Hybrid autonomous vehicles, bringing the company’s autonomous fleet to about 30 vehicles being tested on roads in California, Arizona and Michigan.

Building on more than a decade of Ford autonomous vehicle research, this expansion is a key element of Ford Smart Mobility – the plan to take Ford to the next level in connectivity, mobility, autonomous vehicles, the customer experience, and data and analytics. The newest vehicles are on Ford’s third-generation autonomous vehicle development platform, built using Fusion Hybrid sedans, similar to the second-generation platform.



Ford is using Velodyne’s newest LiDAR sensors – named Solid-State Hybrid Ultra PUCK Auto for its hockey puck-like size and shape – on its third-generation autonomous vehicle platform. Solid-State Hybrid Ultra PUCK Auto sensors boast a longer range of 200 meters, making them the first auto-specific LiDAR sensors capable of handling different driving scenarios. Ultra Puck will accelerate the development and validation of Ford’s virtual driver software, which serves as the decision-making brain that directs vehicle systems.

Velodyne-Puck_01_HR

Solid-State Hybrid Ultra PUCK Auto’s lightweight, sleek design makes it optimal for packaging on a vehicle, such as on the sideview mirror. The design means Ford can reduce the amount of LiDAR sensors from four to two on new Fusion Hybrid autonomous vehicles, and get as much useful data due to the more targeted field of view. The vehicle’s hardware systems, which interact continuously with the virtual driver, are equally important. Third-generation autonomous Fusion Hybrid sedans will have supplemental features and duplicate wiring for power, steering and brakes. These supplemental features will act as backups, if needed.

autonomous-fusion-mcity-still8

Ford was among the first to use the Velodyne LiDAR sensor, an innovation that significantly changed the autonomous vehicle landscape. LiDAR emits short pulses of laser light to precisely scan the surrounding environment millions of times per second and determine the distance to objects, allowing the vehicle to create a real-time, high-definition 3D image of whatever’s around it.

autonomous-fusion-mcity-39A9958_HR

Ford’s first-generation autonomous vehicle platform was built using a Ford F-250 Super Duty for participation in the DARPA challenges in 2005 and 2007. In 2013, Ford introduced its second-generation autonomous vehicle platform, using a Fusion Hybrid sedan. Ford was one of only six teams to participate in both the DARPA Desert Classic and Urban Finals challenges, supported by four engineers who still are on the company’s autonomous vehicle development team.

autonomous-fusion-mcity-still1

The first-generation autonomous vehicle platform helped Ford understand that fully autonomous driving was technically feasible in the near future, and – through ambitious research – how it could achieve this. Fusion Hybrid sedans were chosen for the second-generation vehicles because they have the newest and most advanced electrical architecture. With the latest generation of computers and sensors – including the smaller, but more advanced Velodyne LiDAR HDL-32E sensor – Ford’s autonomous vehicle platform moved a step closer to production.

autonomous-fusion-mcity-39A0285_HR

The objective of the second-generation vehicle fleet is to test many of the computing and sensor components required to achieve fully autonomous driving capability, as defined by SAE International Level 4, which does not require the driver to intervene and take control of the vehicle. Last summer, Ford transitioned from the research phase of development to the advanced engineering phase.

Template BHP


About the Author

www.dsf.my is a service to the public and other website owners. www.dsf.my is not responsible for, and expressly disclaims all liability for, damages of any kind arising out of use, reference to, or reliance on any information contained within the site www.dsf.my. While the information contained within the site is periodically updated, no guarantee is given that the information provided in this website is correct, complete, and up-to-date. www.dsf.my is not responsible for the accuracy or content of information contained inside.



Leave a Reply

Your email address will not be published.

Back to Top ↑