Uncategorized no image

Published on September 29th, 2012 | by Daniel Sherman Fernandez

0

McLaren P1 aims to be the best driver’s car on both road and track

McLaren Automotive has previewed its next generation ultimate supercar – the McLaren P1 – which takes much of its technological and spiritual inspiration from the company’s Racing division.  The McLaren P1 has one simple goal: to be the best driver’s car in the world on road and track.
The McLaren P1 leverages five decades of McLaren’s motorsport skills. It was designed from the outset to prioritise aerodynamic performance and spent many hours in a wind tunnel and using CFD (computational fluid dynamics) aerodynamic modelling – just like a Formula One car.
The new McLaren P1 has much higher levels of downforce than any current road car – 600kg is achieved well below maximum speed. That is approximately five times as much downforce as a McLaren 12C. Its margin over most other high performance supercars is even greater. The McLaren P1’s downforce is similar to current sports racing cars, including the 12C GT3 racer.
Despite the huge performance, the McLaren P1 is also a refined and comfortable high speed supercar. ‘It is designed to be driven to the racing circuit, with great levels of comfort and refinement,’ says Sheriff. ‘And then to be used on the racing circuit, where it will offer an experience matched only by purpose-built race cars.’

The McLaren P1 showcases McLaren Automotive’s advanced motorsport-based engineering, prioritising high performance through state-of-the-art technology. It will feature notable advances in weight reduction, packaging, high-speed performance, materials (especially carbon fibre), powertrain and in aerodynamics.
Active aerodynamics include Formula 1-like DRS
Expertise in Grand Prix racing was used to hone the aerodynamics of the McLaren P1. The large rear wing adjusts automatically to boost downforce and optimise aerodynamics. It can extend rearwards by up to 300mm on a racetrack, and by up to 120mm on the road. The pitch of the rear wing can increase by up to 29 degrees. The double element rear wing profile has been developed using exactly the same methods and software as the current McLaren Formula 1 car.
The McLaren P1 also has a DRS (drag reduction system) function, like a Grand Prix car, to reduce downforce and increase straight line speed. But while a Formula 1 car has a moveable flap in the rear wing, the McLaren P1’s rear wing’s pitch is adjusted.
In addition to the adjustable ‘active’ rear wing, the McLaren P1’s aerodynamic performance is optimised using two flaps mounted under the body ahead of the front wheels. These are also actively controlled, and change angle automatically to optimise performance, boosting downforce and aero efficiency, increasing both speed and driver confidence. The flaps operate through a range of 0-60 degrees.
The rear wing and front flaps work together to boost handling, braking and straight line performance. The active aerodynamics ensures totally consistent handling and driving behavior. The rear wing can also act as an airbrake when deployed.
The smooth underbody also helps to generate ‘ground effects’ suction, boosting downforce.
Every design detail optimises aerodynamics, from the door shape (which helps funnel air with maximum aero efficiency), to the numerous ducts, to the wheel-arch shapes to the snorkel intake on the roof. The latter detail also ties in with Grand Prix design, and was an iconic feature of the seminal McLaren F1 road car. Another design feature that reflects the F1 road car is the gold leaf heat shield around the exhausts. Gold is the ideal metal to reflect heat, never mind its cost.
Visibility is also exceptional for a supercar, thanks to the curved and expansive “canopy” glass, the low beltline and thin A pillars.

Lightweight carbon ‘multi-purpose’ body panels
As with the legendary McLaren F1 road car of 1992, the McLaren P1 is a mid-engine design that uses a carbon fibre monocoque and roof structure safety cage concept called MonoCage which is a development of the MonoCell used in the current 12C and 12C Spider. The structure of the MonoCage, unlike the 12C’s MonoCell, also serves to guide air into the engine through an integral roof snorkel and air intake ducts, saving further weight. All the body panels are carbon fibre to reduce weight. This carries on a McLaren innovation: it was the first company to offer a full carbon body Grand Prix car (in 1981) and the first to offer a full carbon body road car (the F1).
There are also very few body panels. The McLaren P1 has large clamshell single-moulded front and rear panels, which are attached to the central carbon MonoCage, and that’s it, apart from two small access flaps in the rear, a front bonnet and the two doors. This reduces weight and the number of shutlines, creating a cleaner appearance..
The large carbon panels are also multi-functional, with integrated scoops and ducts to boost aero performance and cooling. The panels are extraordinarily thin and light whilst being very strong. Lightness, as with all McLaren road cars, was a priority for the McLaren P1.
Production plans
The McLaren P1 made its debut at the Paris Motor Show on the first press day, September 27. Further details – including its powertrain and other technical information – will be announced early in 2013, shortly before sales begin. Deliveries are expected to commence in late 2013, the year of McLaren’s 50thanniversary.


About the Author

www.dsf.my is a service to the public and other website owners. www.dsf.my is not responsible for, and expressly disclaims all liability for, damages of any kind arising out of use, reference to, or reliance on any information contained within the site www.dsf.my. While the information contained within the site is periodically updated, no guarantee is given that the information provided in this website is correct, complete, and up-to-date. www.dsf.my is not responsible for the accuracy or content of information contained inside.



Leave a Reply

Your email address will not be published. Required fields are marked *

Back to Top ↑